Shrinkage estimation in the frequency domain of multivariate time series

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shrinkage estimation in the frequency domain of multivariate time series

Abstract. In this poster on analysis of high dimensional time series, we present a new non-parametric estimator of the spectral matrix with two appealing properties: compared to the traditional smoothed periodogram our shrinkage estimator has a smaller L2 risk and is numerically more stable due to a smaller condition number. We use the concept of ”Kolmogorov” asymptotics where simultaneously th...

متن کامل

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

Shrinkage Estimation and Prediction for Time Series

For independent samples, shrinkage estimation theory has been developed systematically. Although shrinkage estimators are biased, they improve the MSE of unbiased ones. In view of this, we will develop shrinkage estimation theory and prediction for dependent samples. First, we propose a shrinkage estimator for the coefficients of AR model, which improves the MSE of the least squares estimator. ...

متن کامل

Structural shrinkage of nonparametric spectral estimators for multivariate time series

Abstract: In this paper we investigate the performance of periodogram based estimators of the spectral density matrix of possibly high-dimensional time series. We suggest and study shrinkage as a remedy against numerical instabilities due to deteriorating condition numbers of (kernel) smoothed periodogram matrices. Moreover, shrinking the empirical eigenvalues in the frequency domain towards on...

متن کامل

Shrinkage Estimation of Contemporaneous Outliers in Concurrent Time Series

Contemporaneous outlier blocks (additive or reallocation) caused by special events frequently occur in repeated business time series. When the time series have strong inter-series dependence, shrinkage estimation techniques provide improved estimates of the time series model parameters and of the outlier block. A bootstrap estimate of the covariance matrix of the vector of outlier magnitudes en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2009

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2008.09.009